并发编程-原理篇
synchronized 原理进阶
1. 轻量级锁
轻量级锁的使用场景:如果一个对象虽然有多线程要加锁,但加锁的时间是错开的(也就是没有竞争),那么可以 使用轻量级锁来优化。 轻量级锁对使用者是透明的,即语法仍然是 synchronized 假设有两个方法同步块,利用同一个对象加锁
static final Object obj = static final Object obj = new Object();
public static void method1() {
synchronized (obj) {
// 同步块 A
method2();
}
}
public static void method2() {
synchronized (obj) {
// 同步块 B
}
}
创建锁记录(Lock Record)对象,每个线程都的栈帧都会包含一个锁记录的结构,内部可以存储锁定对象的 Mark Word
让锁记录中 Object reference 指向锁对象,并尝试用 cas 替换 Object 的 Mark Word,将 Mark Word 的值存 入锁记录
如果 cas 替换成功,对象头中存储了 锁记录地址和状态 00 ,表示由该线程给对象加锁,这时图示如下
如果 cas 失败,有两种情况
- 如果是其它线程已经持有了该 Object 的轻量级锁,这时表明有竞争,进入锁膨胀过程
- 如果是自己执行了
synchronized 锁重入
,那么再添加一条Lock Record
作为重入的计数
当退出
synchronized
代码块(解锁时)如果有取值为null
的锁记录,表示有重入,这时重置锁记录,表示重 入计数减一当退出
synchronized
代码块(解锁时)锁记录的值不为null
,这时使用cas
将Mark Word
的值恢复给对象 头- 成功,则解锁成功
- 失败,说明轻量级锁进行了锁膨胀或已经升级为重量级锁,进入重量级锁解锁流程
2. 锁膨胀
如果在尝试加轻量级锁的过程中,CAS
操作无法成功,这时一种情况就是有其它线程为此对象加上了轻量级锁(有 竞争),这时需要进行锁膨胀,将轻量级锁变为重量级锁。
static Object obj = static Object obj = new Object();
public static void method1() {
synchronized( obj ) {
// 同步块
}
}
当 Thread-1 进行轻量级加锁时,Thread-0 已经对该对象加了轻量级锁
- 这时 Thread-1 加轻量级锁失败,进入锁膨胀流程
- 即为 Object 对象申请 Monitor 锁,让 Object 指向重量级锁地址
- 然后自己进入 Monitor 的 EntryList BLOCKED
- 当 Thread-0 退出同步块解锁时,使用
cas
将 Mark Word 的值恢复给对象头,失败。这时会进入重量级解锁 流程,即按照 Monitor 地址找到 Monitor 对象,设置 Owner 为 null,唤醒 EntryList 中 BLOCKED 线程
3. 自旋优化
重量级锁竞争的时候,还可以使用自旋来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退出了同步 块,释放了锁),这时当前线程就可以避免阻塞
。
自旋重试成功的情况
线程 1 (core 1 上) | 对象 Mark | 线程 2 (core 2 上) |
---|---|---|
- | 10(重量锁) | - |
访问同步块,获取 monitor | 10(重量锁)重量锁指针 | - |
成功(加锁) | 10(重量锁)重量锁指针 | - |
执行同步块 | 10(重量锁)重量锁指针 | - |
执行同步块 | 10(重量锁)重量锁指针 | 访问同步块,获取 monitor |
执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
执行完毕 | 10(重量锁)重量锁指针 | 自旋重试 |
成功(解锁) | 01(无锁) | 自旋重试 |
- | 10(重量锁)重量锁指针 | 成功(加锁) |
- | 10(重量锁)重量锁指针 | 执行同步块 |
- | … | … |
自旋重试失败的情况
线程 1 (core 1 上) | 对象 Mark | 线程 2 (core 2 上) |
---|---|---|
- | 10(重量锁) | - |
访问同步块,获取 monitor | 10(重量锁)重量锁指针 | - |
成功(加锁) | 10(重量锁)重量锁指针 | - |
执行同步块 | 10(重量锁)重量锁指针 | - |
执行同步块 | 10(重量锁)重量锁指针 | 访问同步块,获取 monitor |
执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
执行同步块 | 10(重量锁)重量锁指针 | 阻塞 |
- | … | … |
- 自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。
- 在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会 高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。
- Java 7 之后不能控制是否开启自旋功能
4. 偏向锁
轻量级锁在没有竞争时(就自己这个线程),每次重入仍然需要执行 CAS 操作。
Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现 这个线程 ID 是自己的就表示没有竞争,不用重新 CAS。以后只要不发生竞争,这个对象就归该线程所有
例如:
static final Object obj = static final Object obj = new Object();
public static void m1() {
synchronized (obj) {
// 同步块 A
m2();
}
}
public static void m2() {
synchronized (obj) {
// 同步块 B
m3();
}
}
public static void m3() {
synchronized (obj) {
// 同步块 C
}
}
偏向状态
对象头格式
|----------------------------------------------------------|--------------------|
| Mark Word (64 bits) | State |
|----------------------------------------------------------|--------------------|
| unused:25|hashcode:31|unused:1|age:4| biased_lock:0 |01| Normal |
|----------------------------------------------------------|--------------------|
| thread:54|epoch:2|unused:1| age:4 | biased_lock:1 |01| Biased |
|----------------------------------------------------------|--------------------|
| ptr_to_lock_record:62 |00| Lightweight Locked |
|----------------------------------------------------------|--------------------|
| ptr_to_heavyweight_monitor:62 |10| Heavyweight Locked |
|----------------------------------------------------------|--------------------|
| |11| Marked for GC |
|----------------------------------------------------------|--------------------|
一个对象创建时:
- 如果开启了偏向锁(默认开启),那么对象创建后,markword 值为 0x05 即最后 3 位为 101,这时它的 thread、epoch、age 都为 0
- 偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加 VM 参数 XX:BiasedLockingStartupDelay=0 来禁用延迟
- 如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、 age 都为 0,第一次用到 hashcode(调用对象hashcode()) 时才会赋值
1) 测试延迟特性
2) 测试偏向锁
class class Dog {}
利用 jol 第三方工具来查看对象头信息(注意这里扩展了 jol 让它输出更为简洁)
// 添加虚拟机参数 -XX:BiasedLockingStartupDelay=0
public static void main(String[] args) throws IOException {
Dog d = new Dog();
ClassLayout classLayout = ClassLayout.parseInstance(d);
new Thread(() -> {
log.debug("synchronized 前");
System.out.println(classLayout.toPrintableSimple(true));
synchronized (d) {
log.debug("synchronized 中");
System.out.println(classLayout.toPrintableSimple(true));
}
log.debug("synchronized 后");
System.out.println(classLayout.toPrintableSimple(true));
}, "t1").start();
}
输出
11:08:11:08:58.117 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101
11:08:58.121 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101
11:08:58.121 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101
注意:处于偏向锁的对象解锁后,线程 id 仍存储于对象头中
3)测试禁用
在上面测试代码运行时在添加 VM 参数 -XX:-UseBiasedLocking 禁用偏向锁
输出
11:13:11:13:10.018 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
11:13:10.021 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 00010100 11110011 10001000
11:13:10.021 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
4) 测试 hashCode
- 正常状态对象一开始是没有 hashCode 的,第一次调用才生成
撤销 - 调用对象 hashCode(从偏向变为不可偏向)
调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被 撤销,并重新设置markword中的hashcode
轻量级锁会在锁记录中记录 hashCode
重量级锁会在 Monitor 中记录 hashCode 在调用 hashCode 后使用偏向锁,记得去掉 -XX:-UseBiasedLocking
输出
11:22:10.386 c.TestBiased [main] - 调用 hashCode:11:22:10.386 c.TestBiased [main] - 调用 hashCode:1778535015
11:22:10.391 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001
11:22:10.393 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 11000011 11110011 01101000
11:22:10.393 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001
撤销(由可偏向101变为不可偏向001) - 其它线程使用对象
当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁
(偏向锁和轻量级锁有一个前提,那就是两个线程错开的访问这个对象)
private static void test2() private static void test2() throws InterruptedException {
Dog d = new Dog();
Thread t1 = new Thread(() -> {
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
}
//以下代码使得t1执行完上面的代码块,才执行t2,第二个同步代步代码块
synchronized (TestBiased.class) {
TestBiased.class.notify();
} // 如果不用 wait/notify 使用 join 必须打开下面的注释
// 因为:t1 线程不能结束,否则底层线程可能被 jvm 重用作为 t2 线程,底层线程 id 是一样的
/*try {
System.in.read();
} catch (IOException e) {
e.printStackTrace();
}*/
}, "t1");
t1.start();
Thread t2 = new Thread(() -> {
synchronized (TestBiased.class) {
try {
TestBiased.class.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
}
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
}, "t2");
t2.start();
}
输出
[t1] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 [t1] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101
[t2] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101
[t2] - 00000000 00000000 00000000 00000000 00011111 10110101 11110000 01000000
[t2] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
撤销 - 调用 wait/notify(这个只有重量级锁才有)
所谓偏向,是让对象的thread-id变化
批量重偏向
如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2,重偏向会重置对象 的 Thread ID
当撤销偏向锁阈值超过 20 次后,jvm 会这样觉得,我是不是偏向错了呢,于是会在给这些对象加锁时重新偏向至 加锁线程
private static void test3() private static void test3() throws InterruptedException {
Vector list = new Vector<>();
Thread t1 = new Thread(() -> {
for (int i = 0; i < 30; i++) {
Dog d = new Dog();
list.add(d);
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
}
synchronized (list) {
list.notify();
}
}, "t1");
t1.start();
Thread t2 = new Thread(() -> {
synchronized (list) {
try {
list.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("===============> ");
for (int i = 0; i < 30; i++) {
Dog d = list.get(i);
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
}, "t2");
t2.start();
}
输出过长,这里不与展示
批量撤销
当撤销偏向锁阈值超过 40 次后,jvm 会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象 都会变为不可偏向(001)的,新建的对象也是不可偏向的
static Thread t1, t2, t3;
private static void test4() throws InterruptedException {
Vector list = new Vector<>();
int loopNumber = 39;
t1 = new Thread(() -> {
for (int i = 0; i < loopNumber; i++) {
Dog d = new Dog();
list.add(d);
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
}
LockSupport.unpark(t2);
}, "t1");
t1.start();
t2 = new Thread(() -> {
LockSupport.park();
log.debug("===============> ");
for (int i = 0; i < loopNumber; i++) {
Dog d = list.get(i);
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
LockSupport.unpark(t3);
}, "t2");
t2.start();
t3 = new Thread(() -> {
LockSupport.park();
log.debug("===============> ");
for (int i = 0; i < loopNumber; i++) {
Dog d = list.get(i);
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
}
}, "t3");
t3.start();
t3.join();
log.debug(ClassLayout.parseInstance(new Dog()).toPrintableSimple(true));
}
参考资料
https://github.com/farmerjohngit/myblog/issues/12
https://www.cnblogs.com/LemonFive/p/11246086.html
https://www.cnblogs.com/LemonFive/p/11248248.html
偏向锁论文
5. 锁消除
锁消除
@Fork(@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@Warmup(iterations=3)
@Measurement(iterations=5)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class MyBenchmark {
static int x = 0;
@Benchmark
public void a() throws Exception {
x++;
}
@Benchmark
// JIT 即时编译器热点代码进一步优化,JIT认为o是局部变量不会逃离方法的作用范围,会把锁消除掉
public void b() throws Exception {
Object o = new Object();
synchronized (o) {
x++;
}
}
}
java -jar benchmarks.jar
(要打成jar包用)
Benchmark Mode Samples Score Score error Units
c.i.MyBenchmark.a avgt 5 1.542 0.056 ns/op
c.i.MyBenchmark.b avgt 5 1.518 0.091 ns/op
java -XX:-EliminateLocks -jar benchmarks.jar
(锁消除的开关)
Benchmark Mode Samples Score Score error Units
c.i.MyBenchmark.a avgt 5 1.507 0.108 ns/op
c.i.MyBenchmark.b avgt 5 16.976 1.572 ns/op
wait/notify 原理
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!